metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[manganese(II)- μ -[N,N,N',N'tetrakis(2-pyridylmethyl)hexane-1,6-diamine]] bis(perchlorate) acetone disolvate dihydrate]

In-Chul Hwang^a and Kwang Ha^b*

^aDepartment of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea, and ^bSchool of Applied Chemical Engineering, Center for Functional Nano Fine Chemicals, Chonnam National University, Gwangju 500-757, Republic of Korea

Correspondence e-mail: hakwang@chonnam.ac.kr

Received 21 July 2007; accepted 6 August 2007

Key indicators: single-crystal X-ray study; T = 243 K; mean σ (C–C) = 0.009 Å; Hatom completeness 93%; R factor = 0.073; wR factor = 0.227; data-to-parameter ratio = 18.5.

The title compound, $[Mn(C_{30}H_{36}N_6)](ClO_4)_2 \cdot 2C_3H_6O \cdot 2H_2O$, consists of a cationic complex polymer with counter-anions and solvent molecules. In the cationic polymer, Mn²⁺ ions are bridged by the hexadentate ligand N, N, N', N'-tetrakis(2pyridylmethyl)hexane-1,6-diamine (tphn) to form a onedimensional chain structure along the c axis. The repeat unit of the polymer, Mn^{II}(tphn), is disposed about a twofold axis passing through the Mn atom. The coordination geometry around the Mn centre is distorted octahedral.

Related literature

For related literature, see: Jensen et al. (1997).

2n ClO₄ · 2n CH₃COCH₃ · 2n H₂O

Experimental

Crystal data

$[Mn(C_{30}H_{36}N_6)](ClO_4)_2$	$\beta = 94.782 \ (2)^{\circ}$
$2C_3H_6O\cdot 2H_2O$	V = 4130.3 (6) Å ³
$M_r = 886.68$	Z = 4
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 18.7266 (16) Å	$\mu = 0.52 \text{ mm}^{-1}$
b = 14.5252 (12) Å	T = 243 (2) K
c = 15.2375 (13) Å	$0.20 \times 0.18 \times 0.15 \text{ mm}$

Data collection

Bruker SMART 1000 CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\min} = 0.707, \ T_{\max} = 0.926$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.073$ $wR(F^2) = 0.227$ S = 0.924248 reflections

16555 measured reflections 4248 independent reflections 2171 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.056$

230 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.86 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.49 \ {\rm e} \ {\rm \AA}^{-3}$

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

This study was financially supported by Chonnam National University in 2006.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2266).

References

Bruker (2000). SADABS (Version 2.03), SMART (Version 5.618) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Jensen, K. B., McKenzie, C. J., Simonsen, O., Toftlund, H. & Hazell, A. (1997). Inorg. Chim. Acta, 257, 163-172.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2007). E63, m2302 [doi:10.1107/S1600536807038603]

catena-Poly[[manganese(II)-*µ*-[*N*,*N*,*N*',*N*'-tetrakis(2-pyridylmethyl)hexane-1,6-diamine]] bis(perchlorate) acetone disolvate dihydrate]

I.-C. Hwang and K. Ha

Comment

The title compound consists of cationic complex polymer with counter anions (ClO₄) and solvents (acetone and water). In the cation polymer, Mn^{2+} ions are bridged by the hexadentate ligand, *N*,*N*,*N'*-tetrakis(2-pyridylmethyl)-1,6-diaminohexane (tphn), and the constitutional repeating unit of the polymer, Mn^{II} (tphn), is disposed about a twofold axis passing through the Mn atom (Fig. 1). The Mn ion is six-coordinated in a distorted octahedral structure by three N atoms from one tphn ligand and three N atoms from another tphn ligand in the facial positions, respectively. The Mn—N(pyridyl) bond lengths (2.267 (4) and 2.217 (4) Å) are slightly longer than the Mn—*N*(amine) bond length (2.369 (4) Å). The polymer reveals a one-dimensional chain structure along the *c* axis (Fig. 2).

Experimental

To a solution of N,N,N',N'-tetrakis(2-pyridylmethyl)-1,6-diaminohexane (0.50 g, 1.04 mmol) in EtOH (15 ml) was added Mn(ClO₄)₂·6H₂O (0.38 g, 1.05 mmol) and stirred for 1 h at room temparature. The formed precipitate was separated by filtration and washed with EtOH and dried, to give a dark yellow powder (0.48 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a acetone/H₂O(1:1) solution.

Refinement

H atoms were positioned geometrically and allowed to ride on their respective carrier atoms [C—H = 0.94 (aromatic), 0.98 (CH₂) or 0.97 Å (CH₃) and U_{iso} (H) = $1.2U_{eq}$ or $1.5U_{eq}$ (methyl C)]. The solvent molecules were highly disordered, and then the atoms of acetone and water were refined with isotropic thermal parameters, as a result it reflects on large value of the *R* factor. The H atoms of the solvent H₂O molecules could neither be located from Fourier difference maps nor added geometrically.

Figures

Fig. 1. The structure of the constitutional repeating unit of the title compound [Symmetry code: (a) -x, y, 1/2 - z]. Displacement ellipsoids are drawn at the 20% probability level. H atoms and the solvent molecules have been omitted for clarity.

Fig. 2. View of the unit-cell contents and chain structure of the title compound. H atoms and the solvent molecules have been omitted for clarity.

catena-Poly[[manganese(II)- μ -[N,N,N',N'-tetrakis(2-pyridylmethyl)hexane- 1,6-diamine]] diperchlorate acetone disolvate dihydrate]

Crystal data

$[Mn(C_{30}H_{36}N_6)](ClO_4)_2 \cdot 2C_3H_6O \cdot 2H_2O$	$F_{000} = 1860$
$M_r = 886.68$	$D_{\rm x} = 1.426 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 2085 reflections
a = 18.7266 (16) Å	$\theta = 2.2 - 21.0^{\circ}$
b = 14.5252 (12) Å	$\mu = 0.52 \text{ mm}^{-1}$
c = 15.2375 (13) Å	T = 243 (2) K
$\beta = 94.782 \ (2)^{\circ}$	Block, yellow
V = 4130.3 (6) Å ³	$0.20\times0.18\times0.15~mm$
Z = 4	

Data collection

Bruker SMART 1000 CCD diffractometer	4248 independent reflections
Radiation source: fine-focus sealed tube	2171 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.056$
T = 243(2) K	$\theta_{\text{max}} = 26.4^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2000)	$h = -23 \rightarrow 22$
$T_{\min} = 0.707, T_{\max} = 0.926$	$k = -18 \rightarrow 18$
16555 measured reflections	$l = -19 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.073$	H-atom parameters constrained

$wR(F^2) = 0.227$	$w = 1/[\sigma^2(F_o^2) + (0.132P)^2]$
	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 0.92	$(\Delta/\sigma)_{max} < 0.001$
4248 reflections	$\Delta \rho_{max} = 0.86 \text{ e } \text{\AA}^{-3}$
230 parameters	$\Delta \rho_{min} = -0.49 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

F 1		1.	1.				1. 1		182	2
Fractional	atomic	coordinates	and isoft	mic oi	r eauwalent	isofronic	displacement	narameters	IA^{-}	17
1 / 00011011011	aronne	0001011111100	<i>and i</i> 50 <i>i</i> 1	opic oi	equiverent	isonopie	anspiacement	parameters	1 * *	1

	x	У	z	Uiso*/Ueq
Mn	0.0000	0.26386 (6)	0.2500	0.0436 (3)
N1	0.0765 (2)	0.2265 (2)	0.1478 (2)	0.0488 (10)
N2	0.0500 (2)	0.3736 (2)	0.3356 (3)	0.0509 (10)
N3	0.1019 (2)	0.1940 (3)	0.3248 (2)	0.0523 (10)
C1	0.0736 (3)	0.2587 (3)	0.0651 (3)	0.0508 (12)
H1	0.0380	0.3022	0.0478	0.061*
C2	0.1189 (3)	0.2322 (4)	0.0046 (3)	0.0588 (13)
H2	0.1138	0.2562	-0.0529	0.071*
C3	0.1713 (3)	0.1710 (4)	0.0281 (3)	0.0688 (15)
Н3	0.2030	0.1514	-0.0128	0.083*
C4	0.1773 (3)	0.1378 (4)	0.1134 (4)	0.0661 (15)
H4	0.2139	0.0961	0.1318	0.079*
C5	0.1285 (3)	0.1670 (3)	0.1715 (3)	0.0547 (13)
C6	0.1313 (3)	0.1281 (3)	0.2638 (3)	0.0637 (15)
H6A	0.1037	0.0707	0.2633	0.076*
H6B	0.1811	0.1138	0.2843	0.076*
C7	0.0191 (3)	0.4531 (3)	0.3588 (3)	0.0620 (14)
H7	-0.0277	0.4657	0.3345	0.074*
C8	0.0512 (4)	0.5154 (4)	0.4146 (4)	0.0718 (16)
H8	0.0276	0.5700	0.4285	0.086*
C9	0.1186 (4)	0.4969 (4)	0.4502 (4)	0.087 (2)
Н9	0.1423	0.5393	0.4891	0.104*
C10	0.1522 (3)	0.4176 (5)	0.4301 (4)	0.0754 (17)
H10	0.1986	0.4045	0.4556	0.090*
C11	0.1176 (3)	0.3571 (3)	0.3721 (3)	0.0551 (13)

C12	0.1520 (3)	0.2711 (4)	0.3387 (4)	0.0605 (13)
H12A	0.1722	0.2853	0.2829	0.073*
H12B	0.1915	0.2525	0.3811	0.073*
C13	0.0935 (3)	0.1483 (4)	0.4109 (3)	0.0632 (14)
H13A	0.1411	0.1307	0.4369	0.076*
H13B	0.0741	0.1936	0.4503	0.076*
C14	0.0467 (3)	0.0653 (3)	0.4084 (3)	0.0650 (15)
H14A	0.0723	0.0132	0.3846	0.078*
H14B	0.0036	0.0768	0.3690	0.078*
C15	0.0251 (3)	0.0406 (3)	0.4997 (4)	0.0738 (17)
H15A	0.0685	0.0267	0.5380	0.089*
H15B	0.0020	0.0941	0.5244	0.089*
Cl	0.23323 (9)	0.43776 (12)	0.17809 (10)	0.0844 (6)
01	0.2592 (2)	0.4928 (3)	0.1128 (3)	0.1020 (15)
O2	0.2566 (4)	0.4597 (4)	0.2616 (3)	0.150 (3)
O3	0.1583 (3)	0.4373 (6)	0.1717 (5)	0.193 (4)
O4	0.2472 (4)	0.3424 (4)	0.1612 (4)	0.154 (2)
O1S	0.4558 (3)	0.2153 (4)	0.3938 (5)	0.139 (2)*
C1S	0.4137 (6)	0.2292 (8)	0.3337 (8)	0.150 (4)*
C2S	0.3836 (7)	0.1745 (10)	0.2604 (9)	0.231 (6)*
H2S1	0.3393	0.2025	0.2358	0.346*
H2S2	0.3738	0.1128	0.2807	0.346*
H2S3	0.4174	0.1714	0.2156	0.346*
C3S	0.3406 (7)	0.2371 (9)	0.3732 (9)	0.302 (10)*
H3S1	0.3151	0.2906	0.3488	0.453*
H3S2	0.3482	0.2436	0.4367	0.453*
H3S3	0.3125	0.1822	0.3591	0.453*
O1W	0.4390 (7)	0.3332 (9)	0.2678 (9)	0.416 (9)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn	0.0622 (7)	0.0285 (5)	0.0426 (6)	0.000	0.0197 (5)	0.000
N1	0.066 (3)	0.034 (2)	0.048 (2)	0.0046 (19)	0.0172 (19)	0.0045 (17)
N2	0.072 (3)	0.034 (2)	0.050 (2)	-0.0020 (18)	0.023 (2)	-0.0016 (17)
N3	0.077 (3)	0.040 (2)	0.043 (2)	0.013 (2)	0.021 (2)	0.0066 (17)
C1	0.069 (3)	0.041 (3)	0.044 (3)	-0.002 (2)	0.015 (2)	0.003 (2)
C2	0.077 (4)	0.061 (3)	0.040 (3)	-0.007 (3)	0.016 (3)	-0.002 (2)
C3	0.083 (4)	0.076 (4)	0.052 (3)	0.003 (3)	0.029 (3)	-0.010 (3)
C4	0.078 (4)	0.060 (3)	0.063 (4)	0.018 (3)	0.027 (3)	-0.006 (3)
C5	0.074 (3)	0.041 (3)	0.052 (3)	0.005 (2)	0.023 (3)	-0.003 (2)
C6	0.091 (4)	0.050 (3)	0.054 (3)	0.024 (3)	0.026 (3)	0.003 (2)
C7	0.090 (4)	0.040 (3)	0.060 (3)	0.001 (3)	0.025 (3)	-0.004 (2)
C8	0.120 (5)	0.044 (3)	0.055 (3)	-0.010 (3)	0.025 (4)	-0.010 (3)
C9	0.142 (7)	0.060 (4)	0.061 (4)	-0.029 (4)	0.018 (4)	-0.017 (3)
C10	0.084 (4)	0.084 (4)	0.058 (4)	-0.024 (3)	0.004 (3)	-0.007 (3)
C11	0.073 (4)	0.054 (3)	0.042 (3)	-0.008 (3)	0.020 (3)	0.004 (2)
C12	0.065 (3)	0.066 (3)	0.052 (3)	0.004 (3)	0.014 (3)	0.007 (3)

C13 C14 C15 C1 O1 O2 O3 O4	0.090 (4) 0.109 (4) 0.128 (5) 0.0958 (12) 0.112 (3) 0.236 (7) 0.101 (4) 0.240 (7)	0.058 (3) 0.039 (3) 0.043 (3) 0.0966 (13) 0.128 (4) 0.152 (5) 0.273 (10) 0.108 (5)	0.044 (3) 0.051 (3) 0.054 (3) 0.0642 (1 0.069 (3) 0.067 (3) 0.208 (8) 0.124 (5)	0)	0.023 (3) 0.019 (3) 0.024 (3) -0.0439 (9) -0.052 (3) -0.110 (5) -0.031 (5) -0.010 (5)	0.020 (3) 0.030 (3) 0.031 (3) 0.0265 (8) 0.022 (2) 0.034 (4) 0.041 (4) 0.079 (5)		0.011 (2) 0.010 (2) 0.018 (3) -0.0183 (8) -0.005 (3) -0.023 (3) 0.073 (7) -0.030 (4)
Geometric paran	neters (Å, °)							
Mn—N2		2 217 (4)		С9—Н9			0 9400	
$Mn = N2^{i}$		2.217 (1)		C10—C1	1		1 370 (7)
Mr. N1 ⁱ		2.267(4)		С10—Н1	10		0.9400	
Mn—N1		2.267(4)		C_{11}	2		1 514 (7)
Mn—N3		2.267 (4)		C12—H1	12 12.A		0.9800	()
Mn_N3 ⁱ		2.369 (4)		C12—H1	12B		0.9800	
N1—C5		1 331 (6)		C13-C1	4		1 489 (7)
NI-CI		1.341 (6)		C13—H1	13A		0.9800	.')
N2—C7		1.352 (6)		С13—Н1	13B		0.9800	
N2—C11		1.360 (6)		C14—C1	15		1.524 (7)
N3—C12		1.465 (6)		С14—Н	14A		0.9800	
N3—C6		1.472 (6)		С14—Н	14B		0.9800	
N3—C13		1.490 (6)		C15—C1	15 ⁱⁱ		1.509 ([11]
C1—C2		1.360 (7)		С15—Н	15A		0.9800	
C1—H1		0.9400		С15—Н	15B		0.9800	
C2—C3		1.350 (7)		Cl—O2			1.349 ((5)
С2—Н2		0.9400		Cl01			1.395 ((4)
C3—C4		1.382 (7)		Cl—O3			1.399 (6)
С3—Н3		0.9400		Cl04			1.437 (6)
C4—C5		1.390 (6)		01S—C	1S		1.175 (11)	
C4—H4		0.9400		C1S—C2	2S		1.446 ((15)
C5—C6		1.513 (7)		C1S—C3	38		1.546 ((15)
С6—Н6А		0.9800		C2S—H2	2S1		0.9700	
С6—Н6В		0.9800		C2S—H2	282		0.9700	
C7—C8		1.349 (7)		C2S—H2	283		0.9700	
С7—Н7		0.9400		C3S—H3	3S1		0.9700	
C8—C9		1.359 (8)		C3S—H:	382		0.9700	
C8—H8		0.9400		С38—Н.	383		0.9700	
C9—C10		1.339 (9)		G 0 G 0	C10		100 7	0
N2—Mn—N2 ⁱ		88.1 (2)		C8—C9-			120.7 ((6)
$N2$ — Mn — $N1^{1}$		91.59 (13)		C8—C9-	—Н9		119.7	
$N2^{1}$ — Mn — $N1^{1}$		108.42 (14)		C10—C9	9—Н9		119.7	
N2—Mn—N1		108.42 (14)		C9—C10)—C11		119.0 (6)
N2 ⁱ —Mn—N1		91.59 (13)		C9-C10)—H10		120.5	
N1 ⁱ —Mn—N1		152.33 (19)		C11—C1	0—H10		120.5	
N2—Mn—N3		74.99 (14)		N2-C11	l—C10		121.7 ((5)

N2 ⁱ —Mn—N3	151.06 (14)	N2-C11-C12	114.5 (4)
N1 ⁱ —Mn—N3	95.57 (14)	C10—C11—C12	123.7 (5)
N1—Mn—N3	72.42 (13)	N3—C12—C11	113.2 (4)
N2—Mn—N3 ⁱ	151.06 (14)	N3—C12—H12A	108.9
N2 ⁱ —Mn—N3 ⁱ	74.98 (14)	C11—C12—H12A	108.9
N1 ⁱ —Mn—N3 ⁱ	72.42 (13)	N3—C12—H12B	108.9
N1—Mn—N3 ⁱ	95.57 (14)	C11—C12—H12B	108.9
N3—Mn—N3 ⁱ	129.2 (2)	H12A—C12—H12B	107.7
C5—N1—C1	116.9 (4)	C14—C13—N3	116.3 (4)
C5—N1—Mn	117.4 (3)	C14—C13—H13A	108.2
C1—N1—Mn	125.7 (3)	N3—C13—H13A	108.2
C7—N2—C11	116.6 (4)	C14—C13—H13B	108.2
C7—N2—Mn	126.8 (4)	N3—C13—H13B	108.2
C11—N2—Mn	116.6 (3)	H13A—C13—H13B	107.4
C12—N3—C6	108.7 (4)	C13—C14—C15	111.6 (5)
C12—N3—C13	109.1 (4)	C13—C14—H14A	109.3
C6 - N3 - C13	109.8 (4)	C15—C14—H14A	109.3
C12—N3—Mn	102.8 (3)	C13—C14—H14B	109.3
C6-N3-Mn	107.7(3)	C15—C14—H14B	109.3
C13—N3—Mn	118.3 (3)	H14A—C14—H14B	108.0
N1—C1—C2	124.1 (5)	C15 ⁱⁱ —C15—C14	113.7 (6)
N1—C1—H1	118.0	C15 ⁱⁱ —C15—H15A	108.8
C2—C1—H1	118.0	C14—C15—H15A	108.8
C3—C2—C1	119.2 (5)	C15 ⁱⁱ —C15—H15B	108.8
С3—С2—Н2	120.4	C14—C15—H15B	108.8
С1—С2—Н2	120.4	H15A—C15—H15B	107.7
C2—C3—C4	118.7 (5)	O2—Cl—O1	115.6 (3)
С2—С3—Н3	120.7	O2—C1—O3	108.1 (5)
С4—С3—Н3	120.7	01	111.1 (4)
C3—C4—C5	119.1 (5)	02-C1-04	110.3 (4)
C3—C4—H4	120.5	01	110.2 (3)
C5—C4—H4	120.5	03-01-04	100.4 (5)
N1—C5—C4	122.1 (5)	018-C18-C28	134.4 (12)
N1—C5—C6	117.6 (4)	018-C18-C38	105.5 (11)
C4-C5-C6	120 3 (5)	C_{28} C_{18} C_{38}	92,3 (9)
N3-C6-C5	111 0 (4)	C1S = C2S = H2S1	109 5
N3—C6—H6A	109.4	C1S - C2S - H2S2	109.5
C5—C6—H6A	109.4	H2S1-C2S-H2S2	109.5
N3—C6—H6B	109.4	C1S—C2S—H2S3	109.5
C5—C6—H6B	109.4	H281—C28—H283	109.5
Н6А—С6—Н6В	108.0	H2S2—C2S—H2S3	109.5
C8—C7—N2	124.1 (6)	C1S—C3S—H3S1	109.5
C8—C7—H7	118.0	C1S—C3S—H3S2	109.5
N2—C7—H7	118.0	H3S1—C3S—H3S2	109.5
C7-C8-C9	117.9 (6)	C1S—C3S—H3S3	109.5
С7—С8—Н8	121.0	H3S1—C3S—H3S3	109.5
C9—C8—H8	121.0	H3S2—C3S—H3S3	109.5

N2—Mn—N1—C5	83.1 (4)	Mn—N1—C1—C2	-177.6 (4)
N2 ⁱ —Mn—N1—C5	171.6 (3)	N1—C1—C2—C3	-1.2 (8)
N1 ⁱ —Mn—N1—C5	-51.2 (3)	C1—C2—C3—C4	-0.5 (8)
N3—Mn—N1—C5	16.1 (3)	C2—C3—C4—C5	1.3 (8)
N3 ⁱ —Mn—N1—C5	-113.4 (3)	C1—N1—C5—C4	-1.0 (7)
N2—Mn—N1—C1	-97.5 (4)	Mn—N1—C5—C4	178.5 (4)
N2 ⁱ —Mn—N1—C1	-9.0 (4)	C1—N1—C5—C6	-178.4 (4)
N1 ⁱ —Mn—N1—C1	128.2 (4)	Mn—N1—C5—C6	1.1 (6)
N3—Mn—N1—C1	-164.4 (4)	C3—C4—C5—N1	-0.6 (8)
N3 ⁱ —Mn—N1—C1	66.1 (4)	C3—C4—C5—C6	176.8 (5)
N2 ⁱ —Mn—N2—C7	40.4 (3)	C12—N3—C6—C5	-70.6 (5)
N1 ⁱ —Mn—N2—C7	-67.9 (4)	C13—N3—C6—C5	170.2 (4)
N1—Mn—N2—C7	131.5 (4)	Mn—N3—C6—C5	40.1 (5)
N3—Mn—N2—C7	-163.3 (4)	N1—C5—C6—N3	-29.4 (7)
N3 ⁱ —Mn—N2—C7	-13.0 (5)	C4—C5—C6—N3	153.2 (5)
N2 ⁱ —Mn—N2—C11	-143.1 (4)	C11—N2—C7—C8	0.3 (7)
N1 ⁱ —Mn—N2—C11	108.5 (3)	Mn—N2—C7—C8	176.7 (4)
N1-Mn-N2-C11	-52.1 (3)	N2	-0.4 (8)
N3—Mn—N2—C11	13.1 (3)	C7—C8—C9—C10	-0.3 (9)
N3 ⁱ —Mn—N2—C11	163.5 (3)	C8—C9—C10—C11	1.1 (9)
N2—Mn—N3—C12	-30.5 (3)	C7—N2—C11—C10	0.6 (7)
N2 ⁱ —Mn—N3—C12	25.7 (4)	Mn—N2—C11—C10	-176.2 (4)
N1 ⁱ —Mn—N3—C12	-120.7 (3)	C7—N2—C11—C12	-175.4 (4)
N1—Mn—N3—C12	84.8 (3)	Mn—N2—C11—C12	7.8 (5)
N3 ⁱ —Mn—N3—C12	167.5 (3)	C9—C10—C11—N2	-1.2 (8)
N2—Mn—N3—C6	-145.2 (3)	C9—C10—C11—C12	174.4 (5)
N2 ⁱ —Mn—N3—C6	-89.0 (4)	C6—N3—C12—C11	159.4 (4)
N1 ⁱ —Mn—N3—C6	124.7 (3)	C13—N3—C12—C11	-80.9 (5)
N1—Mn—N3—C6	-29.8 (3)	Mn—N3—C12—C11	45.5 (4)
N3 ⁱ —Mn—N3—C6	52.8 (3)	N2-C11-C12-N3	-38.9 (6)
N2—Mn—N3—C13	89.7 (3)	C10-C11-C12-N3	145.2 (5)
N2 ⁱ —Mn—N3—C13	145.9 (3)	C12—N3—C13—C14	-177.3 (4)
N1 ⁱ —Mn—N3—C13	-0.5 (4)	C6—N3—C13—C14	-58.3 (6)
N1—Mn—N3—C13	-155.0 (4)	Mn—N3—C13—C14	65.8 (5)
N3 ⁱ —Mn—N3—C13	-72.3 (3)	N3-C13-C14-C15	-164.0 (4)
C5—N1—C1—C2	1.9 (7)	C13—C14—C15—C15 ⁱⁱ	177.3 (6)
~	an .		

Symmetry codes: (i) -x, y, -z+1/2; (ii) -x, -y, -z+1.

Fig. 1

